Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 131(12): 4425-33, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19265377

RESUMO

The catalytic cycle of numerous enzymes involves the coupling between proton transfer and electron transfer. Yet, the understanding of this coordinated transfer in biological systems remains limited, likely because its characterization relies on the controlled but experimentally challenging modifications of the free energy changes associated with either the electron or proton transfer. We have performed such a study here in Photosystem II. The driving force for electron transfer from Tyr(Z) to P(680)(*+) has been decreased by approximately 80 meV by mutating the axial ligand of P(680), and that for proton transfer upon oxidation of Tyr(Z) by substituting a 3-fluorotyrosine (3F-Tyr(Z)) for Tyr(Z). In Mn-depleted Photosystem II, the dependence upon pH of the oxidation rates of Tyr(Z) and 3F-Tyr(Z) were found to be similar. However, in the pH range where the phenolic hydroxyl of Tyr(Z) is involved in a H-bond with a proton acceptor, the activation energy of the oxidation of 3F-Tyr(Z) is decreased by 110 meV, a value which correlates with the in vitro finding of a 90 meV stabilization energy to the phenolate form of 3F-Tyr when compared to Tyr (Seyedsayamdost et al. J. Am. Chem. Soc. 2006, 128,1569-1579). Thus, when the phenol of Y(Z) acts as a H-bond donor, its oxidation by P(680)(*+) is controlled by its prior deprotonation. This contrasts with the situation prevailing at lower pH, where the proton acceptor is protonated and therefore unavailable, in which the oxidation-induced proton transfer from the phenolic hydroxyl of Tyr(Z) has been proposed to occur concertedly with the electron transfer to P(680)(*+). This suggests a switch between a concerted proton/electron transfer at pHs < 7.5 to a sequential one at pHs > 7.5 and illustrates the roles of the H-bond and of the likely salt-bridge existing between the phenolate and the nearby proton acceptor in determining the coupling between proton and electron transfer.


Assuntos
Elétrons , Complexo de Proteína do Fotossistema II/química , Tirosina/análogos & derivados , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Oxigênio/química , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Sais/química , Termodinâmica , Fatores de Tempo , Tirosina/química
2.
Cardiovasc Toxicol ; 5(4): 365-76, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16382174

RESUMO

Carbonyl reductase (CR) catalyzes the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of several carbonyls. Anthracyclines used to treat cancer are reduced by CR at the C13 carbonyl and the resulting metabolites are implicated in the cardiotoxicity associated with anthracycline therapy. CR also is believed to have a role in detoxifying quinones, raising the question whether CR catalyzes reduction of anthracycline quinones. Steady-state kinetic studies were done with several anthraquinone-containing compounds, including 13-deoxydoxorubicin and daunorubicinol, which lack the C13 carbonyl, thus unmasking the anthraquinone for study. k(cat) and k(cat)/K(m) values for 13-deoxydoxorubicin and daunorubicinol were nearly identical, indicating that that the efficiency of quinone reduction was unaffected by the differences at the C13 position. k(cat) and k(cat)/K(m) values were much smaller for the analogs than for the parent compounds, suggesting that the C13 carbonyl is preferred as a substrate over the quinone. CR also reduced structurally related quinone molecules with less favorable catalytic efficiency. Modeling studies with doxorubicin and carbonyl reductase revealed that methionine 234 sterically hinder the rings adjacent to the quinone, thus accounting for the lower catalytic efficiency. Reduction of the anthraquinones may further define the role of CR in anthracycline metabolism and may influence anthracycline cytotoxic and cardiotoxic mechanisms.


Assuntos
Oxirredutases do Álcool/metabolismo , Daunorrubicina/análogos & derivados , Doxorrubicina/análogos & derivados , Oxirredutases do Álcool/isolamento & purificação , Animais , Antraquinonas/química , Daunorrubicina/química , Daunorrubicina/metabolismo , Doxorrubicina/metabolismo , Humanos , Modelos Moleculares , Oxirredução , Estrutura Terciária de Proteína , Proteínas Recombinantes
3.
J Am Chem Soc ; 126(23): 7228-37, 2004 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-15186160

RESUMO

The proximity of the calcium/strontium binding site of the oxygen evolving complex (OEC) of photosystem II (PSII) to the paramagnetic Mn cluster is explored with (87)Sr three-pulse electron spin-echo envelope modulation (ESEEM) spectroscopy. CW-EPR spectra of Sr(2+)-substituted Ca(2+)-depleted PSII membranes show the modified g = 2 multiline EPR signal as previously reported. We performed three-pulse ESEEM on this modified multiline signal of the Mn cluster using natural abundance Sr and (87)Sr, respectively. Three-pulse ESEEM of the natural abundance Sr sample exhibits no detectable modulation by the 7% abundance (87)Sr. On the other hand, that of the (87)Sr enriched (93%) sample clearly reveals modulation arising from the I = (9)/(2) (87)Sr nucleus weakly magnetically coupled to the Mn cluster. Using a simple point dipole approximation for the electron spin, analysis of the (87)Sr ESEEM modulation depth via an analytic expression suggests a Mn-Ca (Sr) distance of 4.5 A. Simulation of three-pulse ESEEM with a numerical matrix diagonalization procedure gave good agreement with this analytical result. A more appropriate tetranuclear magnetic/structural model for the Mn cluster converts the 4.5 A point dipole distance to a 3.8-5.0 A range of distances. DFT calculations of (43)Ca and (87)Sr quadrupolar interactions on Ca (and Sr substituted) binding sites in various proteins suggest that the lack of the nuclear quadrupole induced splitting in the ESEEM spectrum of (87)Sr enriched PSII samples is related to a very high degree of symmetry of the ligands surrounding the Sr(2+) ion in the substituted Ca site. Numerical simulations show that moderate (87)Sr quadrupolar couplings decrease the envelope modulation relative to the zero quadrupole case, and therefore we consider that the 3.8-5.0 A range obtained without quadrupolar coupling included in the simulation represents an upper limit to the actual manganese-calcium distance. This (87)Sr pulsed EPR spectroscopy provides independent direct evidence that the calcium/strontium binding site is close to the Mn cluster in the OEC of PSII.


Assuntos
Cálcio/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Sítios de Ligação , Manganês/metabolismo , Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Estrutura Terciária de Proteína , Spinacia oleracea/enzimologia , Estrôncio/metabolismo , Isótopos de Estrôncio
4.
Biochim Biophys Acta ; 1655(1-3): 158-71, 2004 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-15100028

RESUMO

The pulsed electron paramagnetic resonance (EPR) methods of electron spin echo envelope modulation (ESEEM) and electron spin echo-electron nuclear double resonance (ESE-ENDOR) are used to investigate the structure of the Photosystem II oxygen-evolving complex (OEC), including the paramagnetic manganese cluster and its immediate surroundings. Recent unpublished results from the pulsed EPR laboratory at UC-Davis are discussed, along with aspects of recent publications, with a focus on substrate and cofactor interactions. New data on the proximity of exchangeable deuterons around the Mn cluster poised in the S(0)-state are presented and interpreted. These pulsed EPR results are used in an evaluation of several recently proposed mechanisms for PSII water oxidation. We strongly favor mechanistic models where the substrate waters bind within the OEC early in the S-state cycle. Models in which the O-O bond is formed by a nucleophilic attack by a Ca(2+)-bound water on a strong S(4)-state electrophile provide a good match to the pulsed EPR data.


Assuntos
Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogênio/química , Manganês/química , Modelos Moleculares , Oxirredução , Água/química , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...